Become a member

Get the best offers and updates relating to Liberty Case News.

― Advertisement ―

spot_img

История ресторан Daniel

Рады представить вам наш любимый ресторан Санкт-Петербурга - Ресторан Даниель. Ресторан имеет множество наград. И он действительно заслуживает звания лучшего ресторана Санкт-Петербурга. Ресторан Daniel расположен...
ДомойНаука и технологияКонструирование черных дыр

Конструирование черных дыр

Большой адронный коллайдер он же Большой адронный ускоритель на встречных пучках — амбициозный проект по созданию гигантского ускорителя частиц, с помощью которого будут проводиться фундаментальные эксперименты, связанные со сверхпроводимостью, высокими энергиями и ещё со многими разными направлениями в науке.
Довольно странно полагать, что кто-то сейчас позволил бы проводить решительно непредсказуемые эксперименты с материей и высокими энергиями, если бы существовала сколько-нибудь серьёзная угроза жизни на Земле — времена не те, равно как и технологии.
Впрочем, всё новое имеет обыкновение пугать. А данный ускоритель действительно обещает быть чем-то новым.
Строящийся на границе Франции и Швейцарии, к востоку от Женевы, у подножья Юрских гор, Большой адронный коллайдер будет представлять из себя кольцевой ускоритель заряженных частиц на встречных пучках с кольцом длиной в 26,65 км.
Зачем это нужно? Дело, прежде всего, в длине кольца, в котором будет осуществляться разгон частиц до сверхвысоких скоростей, и соответственно, сверхвысоких энергий столкновений. Создавая такие условия и изучая процессы, происходящие при них, учёные надеются получить сведения о самых фундаментальных законах физики частиц.
Как гласит уведомление разработчиков: «речь идёт о новой физике, и именно там скрываются ответы на некоторые самые фундаментальные вопросы нашего времени .
Строительство Большого адронного коллайдера — международное предприятие, в котором принимает участие и Российская Федерация, осуществляется под эгидой CERN (Conseil Europeen pour la Recherche Nucleaire — Европейский совет по ядерным исследованиям).
Вторая мировая война в огромной степени помешала развитию физики и других фундаментальных наук в Европе, в то время как в США, державе, от Второй мировой не слишком пострадавшей, наука в изрядной степени продвинулась вперёд. В частности, в Америке началось строительство крупных ускорителей частиц, а отдельные эксперименты уступили крупным научным предприятиям, в которые входили десятки и сотни учёных и инженеров (собственно говоря, к 1945 году, как известно, Штаты обладали атомной бомбой, которой и не преминули воспользоваться против Японии и в назидание остальным).
В Европе, что называется, опомнились довольно быстро. Стало очевидно, что, несмотря на всю славу и традиции наиболее знаменитых европейских университетов, ни одна европейская держава не сможет добиться реального научного прорыва в одиночку. В 1950 году совет ЮНЕСКО принял постановление-рекомендацию относительно создания общеевропейской организации по научным исследованиям, и спустя менее трёх лет 12 стран подписали конвенцию о создании CERN.
Сейчас CERN ассоциируется, в первую очередь, с ускорителями частиц. Первым был протонный коллайдер Intersecting Storage Rings (ISR), запущенный в действие в 1971 году и протонно-антипротонный суперсинхротрон (Super Proton Synchrotron), запущенный в 1981 году. С помощью него удалось доказать объединённую теорию электромагнитных и слабых взаимодействий.
В 1996 году на электронно-позитронном ускорителе LEP (Large Electron-Positron Collider) удалось достичь энергии столкновения в 90 ГэВ (гигаэлектронвольт), открыв совершенно новую область в науке. Однако строили LEP, что называется, с запасом . В частности, данные, получаемые с LEP, настолько точны, что они дают представление о явлениях, проходящих при энергиях, превышающих энергию самого ускорителя. Таков предварительный взгляд издалека на будущие открытия.
Большой адронный коллайдер (LHC) будет частично использовать уже существующую инфраструктуру того же самого LEP, выключенного в 2000 году: его 27-километровый туннель, а также источники частиц и предускорители. При этом LHC будет снабжён самыми передовыми технологиями ускорения и лучшим в мире сверхпроводящим магнитом.
Эксперименты, которые собираются проводить на LHC, ориентированы на искусственное воссоздание явлений, которые пока предсказаны лишь теориями. Впрочем, не стоит упускать из виду и вероятность сюрпризов, так что от физиков и инженеров требуются колоссальное мастерство и изобретательность .
Предполагается, что на LHC удастся достичь энергии столкновения пучков протонов до энергий порядка 7 ТэВ на 7 ТэВ, электронно-протонные пучки будут сталкиваться с энергиями до 1,5 ТэВ, а пучки тяжёлых ионов (например, свинца) сталкиваться с общей энергией свыше 1250 ТэВ, что в 30 раз больше, чем на релятивистском коллайдере тяжёлых ионов (Relativistic Heavy Ion Collider), который сейчас строит у себя Брукхейвенская лаборатория в США.
А теперь самое интересное.
Все эти колоссальные значения энергии, так сказать, вполне подходят для проведения одного исключительной важности эксперимента. Точнее, речь идёт о подтверждении теории, согласно которой при тераэлектронновольтных энергиях и в условиях соответствующей гравитации происходит образование чёрных дыр.
Так вот, касательно вопроса их опасности: Стивен Хокинс, автор чуть ли ни всех ныне существующих концепций чёрных дыр, сделал ключевое для понимания физики этих объектов открытие — чёрные дыры неизбежно испаряются со временем. Даже самые крупные из них.
Крупные — медленно, за миллиарды лет. А вот мелкие…
Мелкие исчезают моментально, за 10 в -17 степени секунд, и, соответственно, у них просто нет времени на то, чтобы втянуть в себя хоть сколько-нибудь существенный объём материи.
Зато, испаряясь, они оставят после себя некое излучение, которое можно будет обнаружить с помощью сверхчувствительной аппаратуры LHC.
Ещё несколько лет назад профессор Стивен Джиддингс, профессор физики в Университете штата Калифорния в Санта-Барбаре вместе со своим коллегой, Скоттом Томасом из Стэнфордского университета, пояснили в своей работе, что при тэраэлектронновольтной гравитации возникают чёрные дыры. По словам Джиддингса, единственный известный сценарий появления чёрных дыр связан с возникновением новых измерений в пространстве-времени, а следовательно, в теории, учёные, добившись возникновения чёрных дыр, получат возможность изучать именно эти дополнительные измерения, от чьих характеристик зависят и характеристики чёрных дыр. Звучит фантастично, но это, по-видимому, пока лишь издержки недостаточного знания.
В общем и целом, ожидается, что чёрные дыры в LHC будут возникать приблизительно каждую секунду, исчезая, как уже сказано, за такие короткие сроки, что никакой опасности представлять не будут даже в теории.
Зато с их помощью удастся лучше понять, как между собой соотносятся квантовая механика и гравитация, ведь испарение чёрных дыр является квантовомеханическим процессом. Наблюдать это в космосе не представляется возможным в силу того, что гигантские чёрные дыры испаряются слишком медленно, а микроскопические — пойди, поищи. Остаётся лишь создавать их искусственно. Изучение их эволюции очень многое прояснит в области фундаментальных физических процессов в нашей Вселенной.
И последнее. Джиддингс, помимо всего прочего, заявил: Если природа позволит нам и вправду создавать чёрные дыры в ускорителях, это будет также означать, что они (чёрные дыры) должны возникать и тогда, когда космические лучи бомбардируют земную атмосферу .
Источник: журнал/www.computerra.ру/компютерра